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Abstract: Frequency counters have gone 

through several evolution stages in their design since 
their first appearance on the market: 

 
Stage 1 until 70-ies Conventional counting 
Stage 2 1980-ies Reciprocal counting (period 

measurement + inversion) 
Stage 3 1990-ies Interpolating Reciprocal Count-

ing 
Stage 4 2000-ies Multiple Time Stamp Average 

Continuous Counting 
 
This paper describes the theory and design of 

frequency counters, and analyses the improvements in 
the latest generation of frequency counters. 

 
The newly introduced high-resolution CNT-90 

Timer/Counter/Analyzer from Pendulum Instruments 
AB in Sweden is used as commercially available ex-
ample of the latest design technology in this presenta-
tion.  

 
The advantages of continuous time-stamping 

technique are discussed, for example regression 
analysis to reduce effects of measurement noise and 
to improve resolution to 12 digits for 1s of measuring 
time. Another example is the ability for seamless 
back-to-back measurements without missing any pe-
riod, which is essential for theoretically correct calcu-
lation of Allan Deviation. 
Keywords: Time-stamping, linear regression 

 
1. Introduction 

An ideal sine wave signal (carrier wave) 
)2sin()( ftAtU π⋅=  has a constant frequency vs time 

behaviour, f = f0 = constant. This means that the sig-
nal phase grows linearly with time: 

002)( Φ+=Φ tft π  [1.1] 
The mean frequency of a continuous periodic 

signal over a certain measurement time, is illustrated 
in figure 1. 

timetmeasuremen
cyclescompleteofnumber

Hzfrequency =)(             [1.2] 

 

N periods;  time = TN

f = N/TN N is an integer number of periods  
 
Figure 1. Definition of mean frequency 
 
Even if the signal were assumed to be ideal, in 

the real world, it would be subject to noise processes 
and interference, which means that individual periods 
could vary. The concept of mean frequency involves 
integral numbers of counted signal cycles, at least one 
cycle. You cannot define a signals frequency by 
measuring a fraction of a cycle. 

 
Real world signals do not have constant stable 

frequencies, not even clock oscillators as will be dis-
cussed in section 7. There could be modulated signals, 
frequency hopping signals, swept frequency signals, 
burst signals and much more. Then f is a function of 
time f(t) and the phase function in [1.1] is expressed 
differently. 

0)(2)( Φ+=Φ ttft π  [1.3] 
 
Please note that the concept of mean frequency 

may be useless for these types of signals. The average 
frequency over 80-channels WLAN using FHSS or 
the average of several burst cycles containing chirp 
radar frequency is not meaningful. Instead the chal-
lenge is to closely follow and represent the actual fre-
quency over time f(t) inside the burst or alternatively 
the statistical distribution of WLAN channels. This 
requires very fast and high-resolution measurements, 
found in very few frequency measurement devices 
today, one being the new CNT-90 
Timer/Counter/Analyzer (Pendulum Instruments AB). 

 
The rest of this paper will focus on frequency 

measurements on stable signals, where the concept of 
mean frequency is meaningful. 

 



2. Conventional counters 

Conventional counting was the first frequency 
counting method and these counters did not measure 
according to the definition of frequency above [1.2]. 
The conventional principle is to open an exact 1-
second-gate and count the number of input cycle trig-
ger events that occur during that second. The counting 
register contains the number of cycles counted during 
exactly one second, which is a sort of frequency (cy-
cles/s). The precisely defined 1s gate-time is derived 
from a X-tal oscillator reference (usually a 10 MHz 
signal) with a good accuracy. 

 
Gate time is not synchronized with the input sig-

nal. The uncertainty of the measurement is ±1 input 
cycle count, which means that the resolution is 1 Hz 
during a 1s gate time for all input signal frequencies. 
To allow measurements with a resolution other than 
1 Hz, gate-times of a multiple (or a sub-multiple) of 
1s are used. E.g. a gate time of 10 s will increase reso-
lution tenfold and add one more digit to the read-out. 
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Figure 2.  Resolution of a conventional counter 

is bad for low-medium frequencies and adequate for 
high frequencies only 

 
3. Reciprocal counting 

In the early 1980-ies, microcomputer based in-
struments started to use reciprocal counting. The input 
signal trigger, and not the internal oscillator, controls 
the gating of a multi-period average measurement. N 
input signal periods are counted during measurement 
time MT. They calculate mean cycle time NMTT =  
and the reciprocal value; mean frequency Tf 1= . 

Figure 3 shows the block diagram of a first gen-
eration reciprocal frequency counter. It contains two 
counting registers. One counts the number of input 
cycles and the other counts the clock pulses, to meas-
ure the time duration. Two synchronized main gates 
simultaneously control both counting registers. 
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Figure 3.  Block diagram for a reciprocal fre-

quency counter 
 
Unlike conventional frequency counters, the set 

measuring time is not an exactly defined gate time. 
The desired measuring time is set via the micro-
computer, but the actual measuring time MT is syn-
chronized to the input signal triggering. The meas-
urement contains an exact number of input cycles.  
Thus the ±1 input cycle error is avoided. Truncation 
errors are now in the time count; i.e. ±1 clock pulse. 

 
To obtain the mean frequency value, the follow-

ing division is made: 
 

MT
N

tpulsesclockCounted
cyclesinputCounted

frequency
c

=
×

=
)(

  

Where tc is the time of one clock cycle 
 
The relative resolution of the calculated result is: 

MTMTtresolution c ns100normally ±±= . 
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Figure 4. The relative resolution is independent 

of input frequency for a reciprocal frequency counter 
 
To obtain a higher resolution, one could increase 

the clock frequency. E.g. a 100 MHz reference clock 
would give a relative resolution of MTns 10± , and 
thus one digit more in the displayed result, compared 
to a standard 10 MHz reference clock. 

 



4. Interpolating reciprocal count-
ing 

The resolution of the 2:nd generation reciprocal 

counters is always
timetMeasuremen

periodclock1± .  

In the third generation of counters, resolution is 
improved by means of analog interpolation of the 
fractional clock pulse. Instead of just counting the 
clock pulse edges to determine the time between start 
and stop trigger, also the fractional clock pulse in the 
beginning and end of the measurement is captured.  

 
Figure 5 shows the block diagram of an interpo-

lating frequency counter, like the Pendulum CNT-85.  
Compared to the basic reciprocal counter (fig. 3) such 
a counter contain also two interpolators, one for the 
start trigger event and one for the stop event. 
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Figure 5.  Block diagram for an interpolating re-

ciprocal frequency counter 
 
Figure 6 illustrates the interpolator’s principle to 

capture the short fractional time between the start 
trigger and the following clock pulses, respectively 
the stop trigger and the following clock pulses. 

 
The analog interpolator in figure 6 starts to 

charge the capacitor, with a constant current I, at the 
arrival of the trigger event and stops on the 2:nd fol-
lowing clock pulse. The capacitor is charged as Q(t) = 
I·t. The voltage (U) over the capacitor is: 

U(t) = Q(t)/C = (I/C)·t [4.1] 
 
The charge time (t) varies between 1 and 2 clock 

cycles, normally 100 to 200 ns. U(t) also varies be-
tween U0 (charge time is 1 clock cycle) and 2U0 (2 
clock cycles). By selecting I and C (U0 = (I/C)·tc), you 

can reach a convenient range (some Volts). The inter-
polator circuitry is duplicated for the stop trigger. 
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Figure 6.  The basic principle of an analog in-

terpolator is a time-to-voltage-conversion 
 
The number of cycles counted N is as before an 

exact integer number, but the accuracy of the corre-
sponding time (MT) is significantly improved. Instead 
of a resolution of ±1 clock cycle, as in classical recip-
rocal counting, the interpolated resolution is improved 
to less than a percent of a clock cycle. MT is calcu-
lated as TN + T1 - T2, where TN is the digitally counted 
time (number of clock cycles), T1 is the interpolated 
fractional clock pulse between start trigger and fol-
lowing clock pulse and T2 is the fractional clock pulse 
between stop trigger and following clock pulse. 

 
The advent of interpolating reciprocal counters 

typically improved the time interval, or single period, 
resolution with 100 to 400 times, from 100 ns (single-
shot) to 1 ns and below for a timer/counter with a 
10 MHz time base oscillator. The Pendulum 
timer/counter model CNT-81 combines interpolation 
techniques with 10 times increased clock frequency 
(100 MHz vs. 10 MHz), and reaches 50 ps resolution 
as single period or time-interval resolution. This cor-
responds to a relative resolution in frequency meas-
urements of MTps 50 (rms value), approx 1000 
times improvement compared to typical 2:nd genera-
tion reciprocal counters ±100 ns/MT (limit value). 

 
5. Continuous time stamping and 

statistical improvements 

In reciprocal counters, with or without interpola-
tion techniques, a frequency measurement has a de-
fined start (= start trigger event), and a stop (= stop 
trigger event) plus a dead-time between measure-
ments to read out and clear registers, do interpolation 
measurements and prepare for next measurement. 
Continuous time stamping changed that scenario.  



In a time-stamping counter, the input trigger 
events, and the clock cycles, are continuously 
counted, without being reset. At regular intervals, 
pacing intervals, the momentary contents of the event 
count register and time count register is transferred to 
the memory. The read-out of register contents is al-
ways synchronized to the input trigger, so it is the 
trigger event that is time stamped. Each stored time 
stamp is also interpolated “on the fly” for improved 
resolution. The contents in the memory is thereafter 
post-processed. 

 
A one-second frequency measurement in a fast 

processing counter could contain hundreds or thou-
sands of paced time-stamped events, not just a start 
event plus a stop event. This makes it possible to use 
linear regression using the least-squares line fitting to 
further improve accuracy. See figure 7. 
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Figure 7. Time-stamping counters have a lot of 

intermediate time stamps of trigger events between 
the start and the stop of measurement 

 
We have a series of data {xk, yk}, where xk is the 

accumulated contents of the Event count register and 
yk is the accumulated time at each sample point.  The 
estimated frequency f* is the inverse slope of the line 
that best fits this data set. Each xk is an exact number, 
whereas each yk has a basic uncertainty tRES.  

 
Our problem is to find the best estimate of the 

mean frequency over measurement time ΜΤ, by find-
ing the straight line )( 0xxbay −⋅+=  using linear 
regression, where: 

 
x = number of cycles counted (independent variable) 
y = elapsed accumulated time (dependent variable) 
a = time value for x = x0 (first sample) 

*1* Tfb == − , the slope of the regression line is the 
estimated mean period T* or the inverse value of the 

estimated mean frequency f*-1. From now on we will 
substitute the slope b  with T*. 

 
From basic statistics we know that the regression 

line slope b (T*) is calculated as: 

( )∑ ∑
∑∑∑

−

−
= 22

*
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xxn
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and that the variance of the slope b (or T*) is 
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 [5.2] 

 
s(y) is the normal rms-resolution tRES for a single 

time stamp, but what is s(x)? The independent vari-
able X is assumed to have a linearly increasing distri-
bution over the range x0 to x0 + N, with samples that 
are evenly spread over the full interval, that is 

n
kNxxk += 0  [5.3] 

For large values of n (number of samples), we 
can approximate the distribution with the continuous 
rectangular distribution with a density (probability) 
function of: 
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For such a distribution we find  
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Thus the standard deviation s(x) for the discrete 

variable { }n
kxX 0=  can be approximated to 

32
)( Nxs =≈ σ  for large values of n 

This approximation, plus the knowledge that T* = 
MT / N and s(y) = tRES, gives us the variance of the 
slope of the regression line from [5.2]:  
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which finally leads us to the relative period or 

frequency uncertainty: 
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Using linear regression analysis (least square line 
fitting), gives a better estimate than just using the two 
end points for calculation and improves the relative 
resolution of the estimated frequency (∆f/f*) from 

MT
tRES⋅2

 to 
2

32
−⋅

⋅⋅

nMT
tRES , where: 

 tRES = individual timestamp uncertainty 
MT = Measuring Time 
n = Number of event/timestamp value pairs used 

in the calculation. 
 
 The improvement in resolution between the two 

methods is thus: 

nnn
45.2

2
6

22
32 ≈

−
=

−⋅
⋅ , for n>>2.  [5.9] 

 
What if n is small, lets say n = 6? Then the ap-

proximation of a continuous rectangular distribution 
is no longer correct, and the standard deviation needs 
to be calculated based on discrete samples, which can 
be shown to give better resolution improvement than 
the approximation [5.9], for small values of n.  

 
Example: 
In the Pendulum model CNT-90, that uses the 

linear regression resolution improvement method, the 
random uncertainty is: 

PeriodorFrequency
nMT

errortriggertRES ×
−⋅

+
2

))((32 22
   [5.10]  

tRES = 70 ps and 
MT

n 800= .  

Trigger error is the effect of superimposed noise 
on the input signal, which can be neglected for ideal 
square wave signals. If we assume no contribution 
from trigger errors and a MT of 1s (n=800), we get a 
relative resolution of: 

12
11

106.8
7981

10732 −
−

⋅≈
⋅

⋅⋅  

 
The CNT-90 can also use traditional frequency 

calculation (using start/stop only), with the random 
uncertainty of: 

PeriodorFrequency
MT

errortriggertRES ×
+ ))((2 22  [5.11] 

 
which would give  for MT = 1s, a relative uncer-

tainty of  10101ps/1s702 −⋅≈⋅  
The random uncertainty in this example is af-

fected as predicted in [5.9] with the factor of 

086.02/45.2 ≈−n . Resolution is thus improved 
from 1E-10 (start-stop) to 8.6E-12 (regression). 

 
The CNT-90 counter has an automatic mode, 

where the regression line fitting is executed at meas-
uring times ≥200 ms and the number of samples used 
in the calculation are gradually reduced as measuring 

time increases 




 =

MT
n 800 . This gives the following 

resolution curve for CNT-90, see figure 8, where the 
dashed line is the traditional start-stop method. The 
resolution is improved for measurement times MT up 
to approx 100s and at 1s measuring time the improved 
resolution is typically 6E-12. 

Figure 8.  Resolution of the continuously time 
stamping counter CNT-90. Resolution improvement 
via linear regression occurs from measuring times 
from 200 ms up to 100s (auto mode) 
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6. Comparison of linear regression 
and traditional start-stop meth-

ods 

One might believe that linear regression always 
is superior to traditional start-stop type of frequency 
measurements. But there are some limitations.  

 
One obvious draw-back is that this post-

processing of hundreds of sample data is time con-
suming, even if the raw data collection is fast. That 
means that the measuring speed of the frequency 
counter is reduced. 

 
Linear regression is very useful, to reduce ran-

dom noise in the measurement process, whether this 
noise is internally generated in the measuring device 
or externally added to the measurement signal. This 
method also assumes that the best fit is a linear ap-
proximation, that is a constant frequency during the 
measurement time MT, only subject to random noise, 
but without drift or intentional modulation.  

 
A frequency source with a frequency drift, can 

be described as: 
)()( 0 tfftf d+=  [6.1] 

 
f0 is the start frequency value 
fd(t) is the frequency drift over time, with mean 

value ≠ 0 Hz 
 
If fd(t) has a linear drift with time, then 

tdtfd ⋅=)( , where d is the frequency drift rate 
(Hz/s). A linear drift during the measurement would 
result in an accumulated phase φ(t) vs time relation 
that is expressed as: 

0
2

02)( Φ++=Φ dttft ππ  [6.2] 
 
Figure 9 shows an example with an exaggerated 

frequency drift, according to [6.2]. This is obviously a 
2:nd order function and should ideally be approxi-
mated with a 2:nd order polynomial and not a 1:st 
order straight line. 

 
The main advantage of the linear regression 

method is to reduce the influence of noise from the 
measurement process and superimposed random noise 
on the test signal, and thus increase resolution. 

 
 

Figure 9. A regression line does not improve 
resolution if there is a frequency drift 

 
Please note that the linear regression method 

only can improve the frequency resolution which con-
tains several trigger events during the measurement. 
For single-shot time interval measurement it is the 
basic resolution of the traditional start-stop measure-
ment tRES that sets the limit. 

 
Finally we can conclude that the continuous 

time-stamping is the key to, and a prerequisite for, the 
regression analysis. This method is not possible in the 
2:nd or 3:rd generation counters.  

 
Continuous timestamping has an other advan-

tage, when it comes to characterizing the short-term 
stability of stable oscillator clocks. The dominating 
tool for this characterization is the calculation of 
Allan Variance (AVAR) and the Allan Deviation 
(ADEV), where AVARADEV = .  

 
The calculation is performed via a number of 

back-to-back (zero-dead-time) frequency measure-
ments over a defined measurement time τ. For theo-
retically correct calculation of AVAR, to avoid dead-
time between measurements, the continuous time-
stamping is also a prerequisite.  Allan Deviation will 
be discussed in next section. 

 



7. Allan Deviation and continuous 
time stamping 

A stable clock oscillator has a frequency vs time 
characteristic that can be described as: 

 
)()()( tftffftf rdoffsN +++=  [7.1] 

 
fN is the nominal frequency 
foffs is the initial frequency offset from nominal 

(calibration uncertainty) 
fd(t) is the frequency drift over time (long term), 

with mean value ≠ 0 Hz 
fr(t) is the random variation (short term stability), 

with mean value = 0 Hz 
 
Typical clock oscillators, fd(t) have a non-linear 

drift over very long time periods (years), but for 
shorter periods (days, weeks) we can assume a linear 
drift with time, that is 

tDftf Nd ≅)(  [7.2] 
 
where D is the fractional frequency drift rate and 

is assumed to be a constant. 
 
All continuous periodic signals can be regarded 

as a sum of sine wave signals, so let us have a look at 
the relation between frequency, phase and time in a 
sine wave signal.  

 
A continuous sine wave with constant amplitude 

A, can be expressed as )(sin)( tAtU Φ= , and its 
momentary or instantaneous frequency f(t) is ex-
pressed as: 

dt
tdtf )(

2
1)( Φ⋅=
π

 [7.3] 

 
Assuming that the frequency drift is linear with a 

constant drift rate, we can now combine [7.1], [7.2] 
and [7.3] to express the total phase of a sine wave 
signal in terms of the various frequency components. 
The term ϕ(t) is the random phase variation causing 
short-term frequency instability )(tf r . 

0
2 )()(2)( Φ++++=Φ ttDftfft NoffsN ϕππ  [7.4] 

 
The fractional random frequency deviation from 

the nominal value is commonly denoted y(t), where: 

y(t) = 
N

r

f
tf )(  [7.5] 

The fractional random frequency deviation is: 
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And it is this random variable that is used to 

characterize the short-term stability of oscillators. 
Characterizing a stable oscillator includes measure-
ment of all frequency components, nominal, offset, 
drift and short-term stability. However, measurement 
of frequency offset and drift can be made in a rea-
sonably straightforward way, by applying a normal 
frequency measurement over sufficiently long meas-
urement time. The random uncertainty of any fre-
quency counter always improves with measurement 
time. 

 
Measurement of short-term stability is more 

challenging, because you need to combine high-
resolution measurements with short measurement 
times. The Allan Deviation or Root Allan Variance is 
the commonly accepted method for calculation of the 
short-term clock stability in the time domain. The 
common measure is Allan Deviation, which is ex-
pressed in Hz and not Hz2 as is the case for AVAR. 

)(τσ yAVARADEV ==  
 
We have seen in [7.6] that the random phase 

variation )(tϕ causes the random frequency variation 
y(t).  The random phase variation can in a similar way 
also be expressed as a random time deviation, which 
is useful for the analysis of Allan Deviation: 

π
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⋅
==  [7.7] 

The random time variation x(t) at times 
NTkt ⋅=  is a measure of the deviation between ac-

tual (noisy) signal relative to the ideal signal  
( π2)()( tTtx N Φ⋅= ) at the zero-crossings of the sig-
nal. 

 
A true instantaneous frequency f(t0) or instanta-

neous fractional frequency y(t0) at time t0 is not an 
observable quantity in practice, unlike e.g. the instan-
taneous phase φ(t0). The measurement of frequency at 
start time tk is always performed as an average value 
over a certain measurement time (τ) in all measure-
ment equipment. 
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The Allan Variance is defined as: 

2
1

2 ))()((
2
1)( τττσ kky yyAVAR −== +  [7.9] 

 
The Allan Variance AVAR is an estimate of the 

variations of a clock frequency over a given meas-
urement time (τ) from one averaging period to the 
next. An Allan Deviation calculation should in theory 
be made over an infinite number of samples, each 
frequency sample being measured back-to-back to the 
previous, without any dead-time between samples. In 
practice there are no indefinite measurement periods, 
and the AVAR for a finite number of samples N can 
be expressed as: 

∑
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Since short-term instability can be expressed ar-

bitrarily as frequency, phase or time deviation [7.8], 
let us look at the AVAR expressed as random time 
deviation instead of random frequency deviation. 
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This way of calculating Allan Variance is suit-

able for time stamping counters, with pacing period τ, 
because )()( 0 τ⋅+= ktxtx k  is simply the timestamp 
of the signal’s zero-crossings, sampled every τ sec-
onds, during the total measurement duration nτ. A 
counting technique based on continuous time-
stamping will also automatically lead to zero-dead-
time frequency measurements, which is according to 
the underlying theory and definition. The CNT-90 
Timer/Counter/Analyzer from Pendulum Instruments 
operates in this mode, enabling correct ADEV meas-
urements and calculation. 

 
Traditional counters, using start-stop frequency 

measurements over measurement time τ, will always 
cause a dead-time between measurements. No matter 
how short this dead-time is, it will be present with at 
least one cycle, due to the inherent counter design. 

 

Figure 10. The CNT-90 Timer/Counter/Analyzer 
from Pendulum Instruments AB 
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